バイオイメージングセンター

代謝システム研究室

代謝システム研究室では、代謝とエピジェネティクスのクロストークと、それによる細胞システムの変化が哺乳 類の個体発生、卵や精子などの生殖細胞分化にどのように寄与するか、あるいはその異常により、どのように 癌など病態や発生異常、不妊などを引き起こすかを研究しています。 主にヒト多能性幹細胞やヒト細胞培養実験系を用い、初期発生、生殖細胞発生や細胞癌化などのモデルプ ラットフォームを樹立します。また代謝系、エピジェネティック変化のグローバルな評価、解析系の樹立を目指 します。これらの系を組み合わせることにより、ヒト細胞での代謝、エピジェネティクスの正常状態、異常状態で の細胞の振る舞いを網羅的に解析します。さらに、これらの実験系を用い重要な遺伝子の機能を網羅的に 同定するため、大規模ゲノム編集スクリーニングテクノロジーを用います。 近年の研究により、初期発生における哺乳類動物モデルとヒトでの、形態的、分子的な決定的な違いが見出 され、動物学的、進化生物学的に重要な知見であると同時に、ヒト生物学の理解、医療応用のためにはヒト細 胞を用いた実験系や解析が不可欠であることがわかってきました。我々の細胞解析テクノロジープラットフォーム と、ヒト細胞培養モデルプラットフォームの樹立を元に関連疾患ヒト細胞モデルの作成、病態マーカー、治療標 的の同定、治療薬の評価系への応用をめざします。代謝システム研究室では、バイオイメージングセンターの 機能として、臨床材料から得られたがん細胞を免疫不全マウスに移植したPatient-derived xenograft (PDX)などの組織における数百の代謝物を同時にマッピングできるイメージングメタボロミクス技術を用いた 医学研究を推進します。凍結切片を用いた細切組織を材料とするImaging mass spectrometry(IMS)、 IMSでは検出が困難な還元力の強い代謝物を効果的に画像化検出できる表面増強ラマンイメージング (Surface-enhanced Raman spectroscopy)などのシステムを稼働しています。2023年秋には世界最大 級の11.7テスラ、ボア径(口径22cm)の核磁気共鳴断層撮影装置(MRI)が導入されました。 動物の脳をはじめとする臓器の代謝システムやH217Oを用いた水の挙動を画像化することによって脳変性疾 患モデルや腸内細菌における代謝病態を解析する技術を開発してまいります。

iMScope
(Imaging mass spectroscopy)
iMScope (Imaging mass spectroscopy)
Surface-enhanced Raman
spectroscopy (SERS)
Surface-enhanced Raman spectroscopy (SERS)
Semiquantitative mass spectrometric images
normal and ischemic murine kidney
Semiquantitative mass spectrometric images

Fujii et al., JCI Insight, 2019

FACSAria III (Cell sorter)
FACSAria III (Cell sorter)
THUNDER Imaging Systems
THUNDER Imaging Systems
※代表的な研究論文
  1. DMRT1 regulates human germline commitment
    Irie N, Lee S, Lorenzi V, Xu H, Chen J, Inoue M, Kobayashi T, Sancho-Serra C, Drousioti E, Dietmann S, Vento-Tormo R, Song C, Surani A
    Nat Cell Biol. 2023 Sep 14.
  2. The crucial role of muscle glucocorticoid signaling in accelerating obesity and glucose intolerance via hyperinsulinemia.
    Yamazaki H, Uehara M, Yoshikawa N, Kuribara-Souta A, Yamamoto M, Hirakawa Y, Kabe Y, Suematsu M, Tanaka H.
    JCI Insight. 2023 Apr 24;8(8):e162382.
  3. Polysulfide Serves as a Hallmark of Desmoplastic Reaction to Differentially Diagnose Ductal Carcinoma In Situ and Invasive Breast Cancer by SERS Imaging.
    Kubo A, Masugi Y, Hase T, Nagashima K, Kawai Y, Takizawa M, Hishiki T, Shiota M, Wakui M, Kitagawa Y, Kabe Y, Sakamoto M, Yachie A, Hayashida T, Suematsu M.
    Antioxidants. 2023 Jan 20;12(2):240.
  4. Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila.
    Kosakamoto H, Okamoto N, Aikawa H, Sugiura Y, Suematsu M, Niwa R, Miura M, Obata F.
    Nat Metab. 2022 Jul;4(7):944-959.
  5. Cooperative action of gut-microbiota-accessible carbohydrates improves host metabolic function.
    Tomioka S, Seki N, Sugiura Y, Akiyama M, Uchiyama J, Yamaguchi G, Yakabe K, Ejima R, Hattori K, Kimizuka T, Fujimura Y, Sato H, Gondo M, Ozaki S, Honme Y, Suematsu M, Kimura I, Inohara N, Nunez G, Hase K, Kim YG.
    Cell Rep. 2022 Jul 19; 40(3):111087.
  6. Omega-3 fatty acid epoxides produced by PAF-AH2 in mast cells regulate pulmonary vascular remodeling.
    Moriyama H, Endo J, Kataoka M, Shimanaka Y, Kono N, Sugiura Y, Goto S, Kitakata H, Hiraide T, Yoshida N, Isobe S, Yamamoto T, Shirakawa K, Anzai A, Katsumata Y, Suematsu M, Kosaki K, Fukuda K, Arai H, Sano M.
    Nat Commun. 2022 May 31;13(1):3013.
  7. Sequential enhancer state remodelling defines human germline competence and specification.
    Tang WWC, Castillo-Venzor A, Gruhn WH, Kobayashi T, Penfold CA, Morgan MD, Sun D, Irie N, Surani MA.
    Nat Cell Biol. 2022 Apr;24(4):448–460.
  8. Cancer-derived cholesterol sulfate is a key mediator to prevent tumor infiltration by effector T cells.
    Tatsuguchi T, Uruno T, Sugiura Y, Sakata D, Izumi Y, Sakurai T, Hattori Y, Oki E, Kubota N, Nishimoto K, Oyama M, Kunimura K, Ohki T, Bamba T, Tahara H, Sakamoto M, Nakamura M, Suematsu M, Fukui Y.
    Int Immunol. 2022 Apr 20;34(5):277-289.
  9. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity.
    Zhang B, Volgelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, Nakano R, Hatae R, Menzies RJ, Sonomura K, Hojo N, Ogawa T, Kobayashi W, Tsutsui Y, Yamamoto S, Maruya M, Narushima S, Suzuki K, Sugiya H, Murakami K, Hashimoto M, Ueno H, Kobayashi T, Ito K, Hirano T, Shiroguchi K, Matsuda F, Suematsu M, Honjo T, Faragasan S.
    Nature. 2021 Nov;599(7885):471-476.
  10. On-tissue polysulfide visualization by surface-enhanced Raman spectroscopy benefits patients with ovarian cancer to predict post-operative chemosensitivity.
    Honda K, Hishiki T, Yamamoto S, Yamamoto T, Miura N, Kubo A, Itoh M, Chen WY, Takano M, Yoshikawa T, Kasamatsu T, Sonoda S, Yoshizawa H, Nakamura S, Itai Y, Shiota M, Koike D, Naya M, Hayakawa N, Naito Y, Matsuura T, Iwaisako K, Masui T, Umemoto S, Nagashima K, Hashimoto Y, Sakuma T, Matsubara O, Huang W, Ida T, Akaike T, Masugi Y, Sakamoto M, Kato T, Ino Y, Yoshida H, Tsuda H, Hiraoka N, Kabe Y, Suematsu M.
    Redox Biol. 2021 May;41:101926.
  11. Tumors Widely Express Hundreds of Embryonic Germline Genes.
    Bruggeman JW, Irie N, Lodder P, van Pelt AMM, Koster J, Hamer G.
    Cancers. 2020 Dec 17;12(12):3812
  12. Short-chain fatty acids bind to apoptosis-associated speck-like protein to activate inflammasome complex to prevent Salmonella infection.
    Tsugawa H, Kabe Y, Kanai A, Sugiura Y, Hida S, Taniguchi S, Takahashi T, Matsui H, Yasukawa Z, Itou H, Takubo K, Suzuki H, Honda K, Handa H, Suematsu M.
    PLoS Biol. 2020 Sep 29;18(9):e3000813.
  13. A Flexible, Pooled CRISPR Library for Drug Development Screens.
    Blanck M, Budnik-Zawilska MB, Lenger SR, McGonigle JE, Martin GRA, le Sage C, Lawo S, Pemberton HN, Tiwana GS, Sorrell DA, Cross BCS.
    CRISPR J. 2020 Jun;3(3):211-222.
  14. A PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells.
    Fang F, Angulo B, Xia N, Sukhwani M, Wang Z, Carey CC, Mazurie A, Cui J, Wilkinson R, Wiedenheft B, Irie N, Surani MA, Orwig KE, Reijo Pera RA.
    Nat Cell Biol. 2018 Jun;20(6):655-665.
  15. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos.
    Floros VI, Pyle A, Dietmann S, Wei W, Tang WCW, Irie N, Payne B, Capalbo A, Noli L, Coxhead J, Hudson G, Crosier M, Strahl H, Khalaf Y, Saitou M, Ilic D, Surani MA, Chinnery PF.
    Nat Cell Biol. 2018 Feb; 20(2):144-151.
  16. What Can Stem Cell Models Tell Us About Human Germ Cell Biology?
    Irie N, Sybirna A, Surani MA.
    Curr Top Dev Biol. 2018;129:25-65.
  17. Dual direction CRISPR transcriptional regulation screening uncovers gene networks driving drug resistance.
    le Sage C, Lawo S, Panicker P, Scales TME, Rahman SA, Little AS, McCarthy NJ, Moore JD, Cross BCS.
    Sci Rep. 2017 Dec 18;7(1):17693.
  18. Principles of early human development and germ cell program from conserved model systems.
    Kobayashi T, Zhang H, Tang WWC, Irie N, Withey S, Klisch D, Sybirna A, Dietmann S, Contreras DA, Webb R, Allegrucci C, Alberio R, Surani MA.
    Nature. 2017 Jun 15;546(7658):416-420.
  19. Germline competency of human embryonic stem cells depends on eomesodermin.
    Chen D, Liu W, Lukianchikov A, Hancock GV, Zimmerman J, Lowe MG, Kim R, Galic Z, Irie N, Surani MA, Jacobsen SE, Clark AT.
    Biology of Reproduction. 2017 Jan 1;97(6):850-861.
  20. Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells.
    Irie N, Surani MA.
    Methods Mol Biol. 2017;1463:217-226.
  21. Specification and epigenetic programming of the human germ line.
    Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA.
    Nat Rev Genet. 2016 Oct;17(10):585-600.
  22. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing.
    Chiang TW, le Sage C, Larrieu D, Demir M, Jackson SP.
    Sci Rep. 2016 Apr 15;6:24356.
  23. Human Germline Development from Pluripotent Stem Cells in vitro.
    Irie N, Kim S, Surani MA.
    Journal of Mammalian Ova Research. 2016;33(2):79-87.
  24. SOX17 is a critical specifier of human primordial germ cell fate.
    Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA.
    Cell. 2015 Jan 15;160(1-2):253-68.
  25. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development.
    Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, Hackett JA, Chinnery PF, Surani MA.
    Cell. 2015 Jun 4;161(6):1453-67.
  26. Effective expansion of engrafted human hematopoietic stem cells in bone marrow of mice expressing human Jagged1.
    Negishi N, Suzuki D, Ito R, Irie N, Matsuo K, Yahata T, Nagano K, Aoki K, Ohya K, Hozumi K, Ando K, Tamaoki N, Ito M, Habu S.
    Exp Hematol. 2014 Jun;42(6):487-94.e1.
  27. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis.
    Irie N, Tang WWC, Surani MA.
    Reprod Med Biol. 2014;13(4):203-215.
  28. Perceiving signals, building networks, reprogramming germ cell fate.
    Barrios F, Irie N, Surani MA.
    The International journal of developmental biology. 2013;57(2-4):123-32.
  29. Osteosclerosis and inhibition of human hematopoiesis in NOG mice expressing human Delta-like 1 in osteoblasts.
    Ito R, Negishi N, Irie N, Matsuo K, Suzuki D, Katano I, Hayakawa E, Kawai K, Kamisako T, Eto T, Ogura T, Hozumi K, Ando K, Aiso S, Tamaoki N, Habu S, Ito M.
    Exp Hematol. 2012 Nov;40(11):953-963.e3.
  30. Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis.
    Irie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, Iwakura Y, Suda T, Matsuo K.
    J Biol Chem. 2009 May 22;284(21):14637-44.
  31. Osteoclast-osteoblast communication.
    Matsuo K, Irie N.
    Arch Biochem Biophys. 2008 May 15;473(2):201-9.
  32. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis.
    Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K.
    Cell Metabolism. 2006 Aug;4(2):111-12.
  33. Transcription factors in osteoclast differentiation.
    Matsuo K, Irie N.
    Nippon Rinsho. 2005 Sep;63(9):1541-6.

PAGE TOP

Copyright © Central Institute for Experimental Medicine and Life Science